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Abstract We present here the estimation of the upper limit
of the number of molecular targets in the human genome
that represent an opportunity for further therapeutic
treatment. We select around ∼6300 human proteins that
are similar to sequences of known protein targets collected
from DrugBank database. Our bioinformatics study esti-
mates the size of ‘druggable’ human genome to be around
20% of human proteome, i.e. the number of the possible
protein targets for small-molecule drug design in medicinal
chemistry. We do not take into account any toxicity
prediction, the three-dimensional characteristics of the
active site in the predicted ‘druggable’ protein families, or
detailed chemical analysis of known inhibitors/drugs.
Instead we rely on remote homology detection method
Meta-BASIC, which is based on sequence and structural
similarity. The prepared dataset of all predicted protein
targets from human genome presents the unique opportu-
nity for developing and benchmarking various in silico
chemo/bio-informatics methods in the context of the virtual
high throughput screening.

Keywords Compound identification . DrugBank database .

Druggable human genome . Human drug targets . MDL drug
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Introduction

The ‘druggable’ proteins are those that are able to bind
drug-like small chemical molecules. Some of those ‘drug-
gable’ proteins can have altered their biological functions
through complex formation, but such modulations may not
provide any therapeutically significant effect. Therefore the
actual limit of the size of druggable genome can be lower,
and only real life experiments can confirm each selected
protein as the drug target. Nevertheless in silico whole
genome analysis of similarity between known protein
targets and human proteins provide the excellent starting
point for further selection of real drug targets in the context
of a specific disease.

The druggability of a novel protein can be obtained from
its experimentally studied homologue. We are following
here the paradigm: “one gene, one target”, i.e. we treat
single genes as druggable without considering the whole
biological complexes (multimers). This similarity can be
estimated using sequence or structural information. Reliable
sequence similarity search tools such as Fasta [1–4] or Blast
[5–7] are frequently not powerful enough to detect
homology unambiguously. On the other hand threading
methods are able to find remote homologues, when one of
the proteins to be aligned has a known three-dimensional
structure. Those structural methods were developed to
detect protein analogues, i.e. structurally similar proteins,
yet without evolutionary relationship. Most of the predic-
tions from threading approaches were later found to be
homology based by more advanced sequence comparison
methods, such as PSI-Blast [5, 6, 8, 9].

On the other hand, structural genomics projects are still
unable to assign fold for complete proteomes. Experimen-
tally determined structures remain unreachable for many
important prokaryotic and eukaryotic proteins. Therefore,
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biologists seek cheap and rapid computational methods for
fold assignment. Those prediction algorithms provide
valuable structural information for many targets, which
can guide the experimental work on selected protein targets
[10]. The further development of those algorithms has been
boosted in the last years by community-wide assessment
experiments in CASP, i.e. critical assessment of techniques
for protein structure prediction [11, 12]. Our computational
protocol, i.e. Meta-BASIC, is focused on the extracting
remote sequence similarity between proteins in the high
throughput scale. The integrated service incorporates
confidence values both at the protein and residue level,
and internal quality checks. The method is based on the
protein family analysis, predicted domain boundaries and
other computational approaches. The output can be easily
used for structure based functional annotation. The Meta-
BASIC http://basic.bioinfo.pl [13] uses bilaterally amplified
sequence information comparison tool, that combines the
achievements in sequence profile-based strategies with
secondary structure predictions to generate fast and reliable
predictions using meta profile alignment methods. Meta-
BASIC is proven to outperform many individual servers,
including fold recognition servers, and it can compete even
with meta-predictors. In addition, Meta-BASIC enables
detection of very distant relationships even if the tertiary
structure for the reference protein is not known, and has a
high-throughput capability [13].

The number of molecular targets in the human genome
representing an opportunity for therapeutic treatment was
up to now estimated by only sequence homology. Sequence
based methods apply extensive similarity search of homol-
ogous sequences for those that are known to be protein
targets from various experiments [14]. Their estimates are
similar and depend on the size of the dataset used as gold-
standard (i.e. the number of known ‘druggable’ proteins).
Early work of Drews et al. (1997) [15] presents 483 known
targets and estimates the number of disease-modifying
genes to be around 5,000–10,000 [15, 16]. Most of known
drugs compete for a binding site in a protein with
endogenous small molecules; therefore they have to bind
to the target with higher potency.

The first high throughput estimate of the size of
druggable human genome was done by comparing sequen-
ces of known therapeutically relevant targets with sequen-
ces from large genome databases. Using only sequence
similarity Hopkins and Groom [17] estimated the number
of disease related genes to be around 10% of the whole
genome. They identified 399 non-redundant molecular
targets that bind small chemical molecules with affinity
below 10 µM. Authors hypothesized that if one member of
a given gene family was able to bind a drug-like molecule;
other proteins from the family would be also able to bind a
similar compound. Following this paradigm they concluded

that 14% of proteins in proteome could be predicted as
‘druggable’ targets. Their work was later repeated by Russ
and Lampel [18]. They estimated using sequence similarity
the number of druggable genes to be around 3,000. Authors
collected 2,917 druggable genes from Ensembl [19, 20] and
1,942 from Consensus Chemical Database Service (CCDS).
They used updated version of InterPro database [21, 22],
together with Pfam protein domain classification [23–26].
The authors collected 2917 druggable genes from Ensembl
and 1942 from CCDS.

The present study extend those results by including not
only sequence similarity, but also more remote similarity
between proteins taking into account also the secondary
structure patterns. Therefore it includes structural similarity
between proteins, thus extending the size of the set of
potential druggable targets.

Methods and results

The most important point in the prediction of protein
‘druggability’ is the selection of the database of protein
targets. We use here the massive sequence data from http://
redpoll.pharmacy.ualberta.ca/drugbank/ covering all known
protein targets. The selected source of medicinal data
provide solid ground for the estimation of the number of
proteins that can be used in pharmaceutical applications and
further analysis of sequence and structural details of
possible interactions. This comprehensive resource is ideal
for in silico drug discovery by linking chemoinformatics
data with bioinformatics resources [27]. It now contains
approximately 4,300 drug entries: over 1,000 FDA-
approved small molecule drugs, 113 FDA-approved bio-
tech, i.e. protein/peptide drugs, 62 nutraceuticals and over
3,000 experimental drugs. Over 6,000 protein sequences
are linked as drug target sequences to these drug entries.

The present study extends the sequence similarity based
estimation of the size of druggable human genome by
including also structural information. The Meta-BASIC
approach is based on four crucial components. The first one
presents a novel sequence profile-based method. Profile
methods, including PSI-Blast, set the standard in the field
as very accurate predictors of remote links between
proteins. High-scoring PSI-Blast hits are essentially correct
and biologically meaningful. In addition, a skilful PSI-Blast
user is able to pick a few non-trivial homologues by careful
analysis of hits in the twilight-zone. However, many
interesting but very remote homologues still remain
undetected at the sequence level. The second one uses
predicted local structure information. Adding structural
information to a sequence profile helps to find those
homologues that diverged beyond recognition sequence-
wise, but remain structurally similar. In contrast to meta-
profiles tools, many conventional threading algorithms use
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experimental global structure to score similarity. Therefore
a protein of interest should have a structure of its
homologue determined as a pre-requisite for correct
prediction. The Meta-BASIC is free from that requirement
and can find links between proteins of unknown structure.
In addition, parting with the global threading allows for a
faster algorithm and higher throughput. The third one not
only combines sequence profile with secondary structure
profile to form what we call “meta”-profile, but also utilizes
several scoring systems and alignment algorithms. Averag-
ing between the results obtained by slightly different
approaches helps to boost the accuracy. Those three
components provide a high-throughput capability since it
is a stand-alone program in contrast to most meta-servers
that collect predictions from several remotely located
servers. The fourth component includes protocols for
communication with remote servers. It collects predictions
from several external servers, publicly available databases
and services.

In the present study we prepared 38,171 human proteins
from HPI (the UniProtKB/Swiss-Prot Human Proteome
Initiative at http://www.expasy.org/ sprot/hpi/hpi_desc.
html) proteome database. This constructed the proteome
of interest from which they selected those proteins that had
direct BLAST hit (e-value equal to 0.0) to protein
sequences from DrugBank database (http://redpoll.pharma
cy.ualberta.ca/drugbank/index.html). The first step of anal-
ysis was to cluster the whole set of redundant proteins by
CD-HIT [28] to get 6,414 proteins. Next, the human
database was searched by using Meta-BASIC on this
potential target database. The most interesting group of
human proteins is the set with high scoring hits to
DrugBank and PDB proteins. Those preliminary results
suggest that ∼6,300 redundant human sequences have
conservative hits to DrugBank target sequences. This
estimates the size of ‘druggable’ human genome to be
around 20% of whole human proteome. It is a very rough
estimate (we did not calculate any redundancy of sequences
in DrugBank, or the redundancy of sequences in EBI/HPI
human protein database). On the other hand the non-
redundant subset of over 3,000 sequences from DrugBank
protein targets hade direct Meta-BASIC hits (e-value less
than 0) to human proteins. The non-redundant selection was
performed using CD-HIT with cut-off 1.0. In total, around
2,825 proteins from DrugBank (6,414 non-redundant
subset) have direct sequence similarity to proteins from
PDB90 database and human proteome.

Our recent studies confirm results by Hopkins and
Groom [17] done by comparing sequences of known
therapeutically relevant targets with sequences from large
genome databases. In their approach sequences of those
drug-binding domains were used for identification of 130
families of InterPro database of domains [21, 22] that

contain at least one known drug target. Our predicted set of
druggable proteins has similar percentages of known, large
protein families. We have also found GPCRs (G-protein-
coupled receptor) proteins, protein kinases (with serine/
threonine/tyrosine modifications), zinc metallopeptidases,
serine proteases, nuclear hormone receptors and phospho-
diesterases. We assume, that if at least one member of a
given gene family was able to bind a drug-like molecule;
other proteins from the family would also be able to bind a
similar compound. The two most populated protein families
are GPCRs and protein kinases. The protease group was
found to be the third most important one. The classification
of predicted protein targets by their biochemical character-
istics reported similar results to previous studies. Most
protein targets appear to be enzymes (∼50%) and GPCR
proteins (∼30%), and ion channels ∼10%. The rest of
medium or small protein groups are transporters, nuclear
hormone and other receptors, integrins and DNA.

This classification is similar to work by Russ and
Lampel [18] and results published by Plewczynski [14].
This work reported that around 5,800 human sequences
have conservative BLAST [6] hits to sequences from
DrugBank database of protein targets. Their estimate of
the ‘druggable’ human genome size is equal to around
15%. These estimates did not take into account any
redundancies of sequences in DrugBank, or the redundancy
of sequences in EBI/HPI human protein database. No
significantly populated new classes of proteins were
identified when Meta-BASIC was applied to search for
remote sequence similarity, compared to the results
obtained from those sequence comparison. Therefore
further and more refined prediction of druggability have
to be done by structure based approaches, when unexpected
structural similarity not detectable by sequence methods
will reveal new functional associations between protein of
human proteome. We hypothesize that global comparison
of proteins structures, or more focused local comparison of
active sites structures can reveal new functionally similar
pairs of proteins. Therefore such an approach is likely to
provide new protein families similar to those that are
druggable, yet are not detectable at the global sequence
level.

Summary

The whole ‘druggable’ human genome is the target for
currently developed small chemical molecules in typical
drug design procedure. We did not consider any other
approaches for affecting the diseases by applying other
biomolecules (for example peptides). It is estimated that
only four novel targets are launched on the marked each
year with similar number of new chemical entities (NCEs).
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In 2002 only 120 proteins were known with marketed drugs
[17]. Therefore, even a small number of targets is enough to
successfully build pharmaceutical industry. Oral bioavail-
ability of molecules follows the rule-of-five first proposed
by Lipinski in 1997. Yet new protein drugs, antibodies,
DNA vaccines, virus therapies could expand the presently
known range of potential drug targets. In this article the
paradigm: “one gene, one target” is closely followed, i.e.
we treat single genes/proteins as ‘druggable’ without
considering the whole biological complexes (multimers).
This assumption is of course questionable as sometimes
only multimers are medicinally active. However, in our
approach we neglect this information even if it is available
from PDB database or literature. Moreover, many success-
ful drugs have more than one molecular target and their
utility in therapy is determined by the balance between their
actions (not their absolute specificity). This is also
neglected in the presented approach.

Those theoretical methods strongly depend on the
available experimental data. As known from previous
studies the ‘druggability’ of the protein is typically defined
as its ability to bind a small chemical molecule. Therefore
when a set of proteins is available that are experimentally
confirmed as ‘druggable’ ones, it is possible to propose new
proteins that can be inhibited in a similar way. Thus
performing sequence similarity search on this set is usually
enough to find new potent candidates for ‘druggable’
proteins. Those proteins are likely to share similar three
dimensional fold, therefore they are able to bind drug-like
small molecules. We stress here, that it does not guarantee
the linkage to particular diseases. Those candidates have to
be verified by detailed structural analysis, other in silico
virtual high-throughput methods, and ultimately by exper-
imental means in order to confirm that activities of these
proteins can actually be inhibited by any of known drugs.
Nevertheless, the final set of protein targets can be mapped
onto whole human proteome providing the reliable estimate
of the size of human ‘druggable’ genome. It should be
stressed that these proteins are of crucial importance if one
is searching for drug targets for a given disease or one is
performing off-target specificity analyses for a small
chemical molecule. In the last step of typical drug
development procedure all potential drug targets have to
be clinically validated to confirm the development of drugs
for a particular protein target is worth proceeding.

We will provide shortly the specialized web pages that
will present the human drug targets, i.e. ‘druggable’ subset
of human proteome. Our resources will include human
‘druggable’ sequences, their crystal structures if known, 3D
models for those sequences, sets of known inhibitors for
each human drug target, the 3D structure (known or
predicted) of protein-inhibitor complexes, together with
detailed biological and chemical information on both

human drug targets and their inhibitors. This database can
be used as the core training set for our machine learning
algorithms and global/local sequence similarity searches for
further refinement of the set of potential drug targets. This
resource will allow for rapid identification of most
interesting ‘druggable’ targets in human proteome. Accord-
ing to Russ and Lampel [18 ] one decade from now the
pharmaceutical industry challenge will lay in discovering
the therapeutic effect of known leads and druggable targets.
What is most important, in order to increase the size of our
pharmacopeia and to cure human diseases more efficiently,
new ‘druggable’ protein families must be identified.
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